Religious Minorities and High Risk Mobilization:

The Collective Rescue of Jews in the Netherlands during the Holocaust*

Robert Braun

Department of Government
Cornell University
214 White Hall
Ithaca, NY 14853
March 16, 2014

*I would like to thank Marnix Croes, Peter Tammes, Herman van Rens and the Dutch Museum for Jewish History for sharing data. Fred Cammaert, Marnix Croes, Evgeny Finkel, Bert-Jan Flim, Pim Griffioen, Stathis Kalyvas, Patrick Kuhn, Andrew Little, Raymund Schutz, Peter Tammes, Herman van Rens, Tim Snyder, Hans de Vries, Martha Wilfahrt, Sidney Tarrow, Chris Way and Alex Kuo helped me with comments somewhere along the way. This project has been made possible by a Saul Kagan Fellowship in Advanced Shoah Studies, the National Science Foundation (grant #1122985), the Einaudi Center for European Studies, the Reppy Institute for Peace and Conflict Studies and the Council For European Studies. Earlier versions of this paper were presented at the center for Order Conflict and Violence, Yale University and annual meetings of the Social Science History Association, Council for European Studies and Midwest Political Science Association.
Abstract

Why do some communities protect persecuted groups during genocide while others do not? This paper hypothesizes that religious minority groups are important providers of support because deviance from the broader environment increases member commitment and reduces risks of denunciation. The author builds a geo-coded dataset of Jewish evasion in the Netherlands during the Holocaust to test this hypothesis. Spatial regression models of 93 percent of all Dutch Jews demonstrate a robust and positive correlation between the proximity to minority churches and evasion. While proximity to Catholic churches increased evasion in dominantly Protestant regions by more than 20 percent, proximity to Protestant churches had the same effect in Catholic parts of the country. County fixed effects and the concentric dispersion of Catholicism from missionary hotbed Delft are exploited to disentangle the effect of religious minority groups from local level tolerance and other omitted variables.

Wordcount: 12,388 words (Including footnotes, abstract and references.)
1 Introduction

About 200 kilometers from the Dutch capital Amsterdam, near the German border, lie the medium sized cities Sittard and Heerlen. Before the outbreak of World War II, Heerlen and Sittard had a similar socio-cultural outlook. The population in both cities was predominately Catholic, relatively prosperous and labored in the mining industry. Ever since the turn of the nineteenth century the villages were home to sizeable Jewish communities of around a 150 individuals. In both cities the Jewish communities were vibrant enough to maintain their own cemeteries and synagogues. Levels of anti-Semitism in both cities were roughly comparable and anti-Semitic attacks were rare (Michman, Beem and Michman, 1999). During the 1939 elections for the provincial council, the last elections before the German invasion started, the anti-Semitic National-Socialist Movement (NSB) obtained 5 and 6 percent of the votes in Heerlen and Sittard respectively, which closely resembled the provincial average (CBS, 1939). During the German occupation both communities faced similar challenges and underwent identical structural transformations.

From 1941 onwards, Jews were no longer allowed to take part in public life. After being segregated socially and spatially, German SS-officers, helped by local policemen, started organizing roundups to track down Jewish inhabitants and send them to concentration camps in Eastern-Europe (Presser, 1965). Despite the socio-cultural similarity of the two cities however, outcomes of these roundups differed fundamentally as we can see in figure 1 where purple dots denote Jews that evaded deportation while light blue dots represent Jews that got deported. If we compare Heerlen in the lower left corner with neighboring and socially similar Sittard in the lower right corner, we immediately see the difference. In Heerlen large groups of Jews were able to hide from the Germans with help from local rescue networks. As a result 53 percent of all Jews survived the war. Help unfortunately was less available in neighboring Sittard where only 20 percent of the entire Jewish community was able to escape the cruelties that awaited them in the camps of Auschwitz.
and Dachau (Rens 2013). These local differences were in no sense unique to this area. If we take a step back and look at the map in the middle, we can discern small purple pockets of evaded Jews surrounded by larger light and dark blue patches that denote lower evasion throughout the whole country. This poses an intriguing puzzle: Why did rescue networks emerge in Heerlen and not 5 kilometers to the North in socio-culturally similar Sittard?

[Figure 1 about here.]

Existing theories on genocide have difficulty answering such a question because their focus is either too micro or too macro. On the macro-side of the spectrum researchers compare national level differences in victimization or different episodes of mass killing (Harff 2003). On the micro-side, scholarship focuses on how individual characteristics determine who rescues Jews and who does not (Monroe 2001). While the first branch of research is too broad and overlooks local variation altogether, the latter is too specific as it fails to link individual level determinants to local conditions.

Drawing on work developed in the study of social movements (McAdam, Tarrow and Tilly 2001) and insurgency (Kalyvas 2006), this paper takes a meso-level perspective focusing on community level factors (Croes and Tammes 2004; Finkel and Straus 2012; Kopstein and Wittenberg 2011). In particular, it suggests that local level variation in rescue activities can be partly explained by the presence of minority church communities. Rescue during genocide is a form of high-risk mobilization (McAdam 1986) involving clandestine organizations that are vulnerable to individual betrayal (Flim 1997; Longman 2010). In the absence of financial incentives, local leaders can only rely on non-material commitment to group and leadership to facilitate mobilization (Weinstein 2006). Both economic (Berman and Laitin 2008) and social-psychological theories (Brewer and Silver 2000) of collective action suggest that members of minority groups display more commitment which enables group leaders to initiate collective actions while reducing risks of denunciation.
The Holocaust in the Netherlands provides a unique albeit macabre opportunity to investigate whether local leaders of minority churches were better able to produce high-risk mobilization in the form of rescue networks for 3 reasons. First, there is sufficient variation on the independent variable. The Netherlands was at the frontline of the reformation, counter-reformation and Protestant secessions. Missionary activities (of both Protestants and Catholics) and disputed scripture (mostly within the Protestants church) created a dynamic religious landscape and resulted in pockets of minority communities in both Catholic and Protestant parts of the country (Kok [1964]). This mixed landscape allows me to assess whether religious deviance affected mobilization for both Protestant and Catholic communities. Second, national top down enforcement of mobilization is kept constant as Protestant and Catholic leaders protested anti-Semitic legislation collaboratively at the national level (Snoek [2005]), providing Christians with the same moral message of how German persecutions went against the tenets of their faiths regardless of congregation. Thirdly, there is enormous variation on the dependent variable. Following the national example, local religious leaders played an important role in mobilizing populations to protect Jews on a local level, whether this happened varied however both within and between municipalities (Michman et al. [2004]).

After using post-war case studies, surveys and testimonies to probe the plausibility of the minority hypothesis, this paper deploys a new geocoded dataset of Jewish evasion in the Netherlands to systematically assess the relationship between geographical proximity to minority churches and evasion. By pairing German registrations of Jews with commemoration books and camp lists I am able to map where Jews lived and whether they evaded deportation or not. This data is combined with geocoded information on Catholic and Protestant communities throughout the country. Auto-logistic models of 93 percent of all Dutch Jews show a strong and positive correlation between the presence of minority churches and evasion. Analysis with fixed effects and sets of spatial controls suggest the robustness of these results. Using distance from Delft, the working terrain of the first vicar to the Catholic mission in the Protestant Northern Netherlands, as an
instrument for Catholicism, enables me to isolate the effect of minority churches from local levels of tolerance for a subset of cases.

Before we proceed, it is important to emphasize what this analysis does and does not aim to show. First, this paper highlights the neglected role of minority churches but does not argue it is the only factor explaining local level differences in evasion. Alternative factors will be discussed but only if they correlate with both evasion and the presence of minority churches and act as confounding variables. Second, although the statistical models are able to show whether aggregate patterns in evasion are in line with the posited theory or not, they do not enable us to observe the actual theoretical mechanisms at work.

The remainder of this paper will proceed as follows. In the next section, I briefly introduce readers to how the Holocaust played out in the Dutch context. Following that, I describe how a religious minority position enables collective resistance. Brief case studies and analysis of post-war testimonies and surveys are presented in section 4. Section 5 introduces the geocoded dataset and statistical techniques used to model Jewish evasion. The results are presented in the following section. In the concluding section, I highlight the relevance of the finding for genocide studies, collective action theory and Dutch historiography.

2 The Holocaust in the Netherlands

Following the quick capitulation by the Dutch armed forces, a Nazi civilian government led by Reichs Commissioner Seys-Inquart gradually isolated Jews socially, economically and administratively. When the major deportations started in May 1942, Jews were no longer allowed to travel without a permit, enter public spaces or own more than 250 dollars. More importantly, German authorities had been able to exploit local bureaucracies that had remained intact to obtain detailed residential information on all Jews living in the country [Presser 1965].

Jews were made to believe they had been called to work, but in reality were sent to
extermination camps. At first the Germans hoped all Jews would obey orders and show up for deportation themselves after receiving a call. When this did not turn out to be true for large portions of the Jewish population, the German security forces started organizing round-ups in collaboration with local police and new troops of Dutch volunteers (Croes and Tammes, 2004). In the last stage of the deportation, between October 1943 and September 1944, the Germans, helped by newly established police units and bounty hunters, started tracking down Jews who had gone underground. At the end of 1944 the Netherlands was declared ”Jew free”. The result of the preceding years was nothing less than a disaster: more than 70 percent of the Jews were killed, by far the highest number in Western Europe (Griffioen and Zeller, 2011).

Only 28,000 Jews attempted to evade this frighteningly effective deportation campaign (Croes, 2004). As crossing the Dutch border was extremely difficult, Jews who wanted to escape deportation had to find hiding inside the country which depended heavily on the aid of others, whether through sharing of resources, providing shelter or facilitating mobility between safe houses (Varese and Yaish, 2000). How did the Gentile population respond? Although many gentiles were aggrieved about what happened to the Jews, they remained inactive. Feelings of powerlessness and fear dominated because helping Jews entailed the risk of getting deported oneself (Boom, 2012). Occasionally, isolated altruists were able to assist Jews but sheltering often was too much work for 1 or 2 people alone (Flim, 1997). But with the exception of some student networks most rescue activities remained geographically isolated and disjointed (Jong, 1969-1991). It was not until late 1943, when the labor deployment was extended to include Gentiles as well, that the willingness to provide shelter started to grow and something resembling a national rescue movement emerged. By then it was a ”little too late” (Moore, 2010) as most Jews were already rounded up while most of those who remained in the country lived in Amsterdam and The Hague, strongholds of German security forces that were difficult to escape (Presser, 1965).

1Others survived via legal strategies, which will be discussed at the beginning of section 5.
One group of actors that did openly stand up for the Jews and protested anti-Semitic policies early on were national church leaders. Their denominational differences notwithstanding the 3 major religious groups - Protestants, Orthodox Protestants and Catholics - all saw anti-Semitism as a threat to pluralist traditions of Dutch society and feared being next in line for persecution (Author, 2013).

Motivated by this fear national church leaders protested anti-Semitic legislation at least 39 times (Croes and Tammes, 2004; Tammes and Smits, 2005). In addition the Protestants and Orthodox Protestants organized fundraisers ”to support their Jewish brothers” (Delleman, 1949) while Archbishop De Jong donated 12,000 dollars to an organization that provided shelter to Jewish children (Jong, 1969-1991) and secretly encouraged local clergy to help Jews ”by any means possible” (Stokman, 1945). From January 1942 onwards leaders of the 3 churches combined forces for the first time in Dutch history. In an unprecedented display of inter-religious solidarity, Christian churches agreed to read joint statements from their pulpits during local services nationwide in July 1942 and February 1943, declaring the culpability of anyone who contributed to the deportations of Jews (Snoek, 2005).

In line with the moral impetus sent out by their superiors local clergymen (and woman) and other religious opinion leaders played a key role instigating the small assistance networks that were so crucial for evasion early on (Michman et al., 2004). However, despite the consistent top down message that Jewish persecutions went against the tenets of all Christian faiths, religious help to Jews was far from universal. At a local level, some ministers, priests and religious opinion leaders were better able to negate fear and feelings of powerlessness among followers than others.
3 Religious Minorities and Mobilization

3.1 A Theory of commitment

I conceptualize the rescue of persecuted groups in general and Jews in particular as a form of high-risk collective action (McAdam, 1986; Wood, 2003). Helping a persecuted minority involves building an organization capable of keeping potential victims out of the hands of their much stronger persecutors by facilitating a) illegal migration and b) illegal shelter. Numerous barriers to the organization of these rescue activities exist. During the Holocaust, rescue networks had to supply Jews with fake identifications papers, rationing cards, produce, clothes, information about upcoming roundups, safe houses, ability to travel, safe transportation routes and most importantly numerous hiding places as few rescuers were able to provide shelter for a long period of time. This required the cooperation of reliable host families, couriers, food providers, organizers and informants in the police system (Flim, 1997).

Attracting people to participate in these illegal activities is far from easy as both the costs and odds of getting caught are extremely high. Only 1 denunciation motivated by ideological conviction, personal grudges or induced by monetary rewards puts a whole operation at risk, while punishing defectors is almost impossible. To reduce exposure, clandestine rescue necessitates careful recruitment of helpers and the formation of secretive shells around persecuted groups. Group leaders with few material resources have to appeal to existing group commitment among their followers to create networks that are insulated from defection (Weinstein, 2006).

The literature on insurgency and social movements provides a wide array of non-material mechanisms that create and sustain collective action in high risk contexts, such as: honor, belief in leadership (Frohlich, Oppenheimer and Young, 1971), norms (Petersen, 2001) and joy in deploying agency to obtain group goals (Wood, 2003). Their enormous variety notwithstanding they are all dependent on how committed members are to their group. Group honor, norms and leadership do not mean anything when
attachment to a community is only superficial. As group commitment is something that is hard to shape and develop in the short term it acts like a structural constraint on mobilization.

So why were members of 1 church community during the Holocaust more committed to their leaders and fellow-members than others? From a social psychological angle the distinctiveness postulate provides a promising starting point. According to this theorem, people rely on perceptual selectivity to make sense of who they are and what they commit to. What they perceive to be important however is not fixed but changes in predictable ways when moving from one social setting to the other. Specifically, individuals tend to commit most to characteristics that are relatively rare in their social environments because deviant traits provide most information on who you are (McGuire and Padawer-Singer, 1976).

In line with the distinctiveness postulate social psychologists studying collective action have demonstrated that minority groups, i.e. groups organized around relatively rare traits, are more cohesive and display strong group identification. These higher levels of identification caused by distinctiveness in turn increase compliance with group norms, overall loyalty and voluntary self sacrifice among members when leaders ask for it (Brewer and Silver, 2000).

Economists of insurgency and collective action emphasize the importance of membership screening for the creation of commitment. To build a community in which membership is valued one needs to attract committed individuals and repel potential free-riders. The latter group dilutes the overall importance of a collectivity to all members because their lower commitment inclines them to participate less. This in turn also lowers participation among members with more commitment leading to a downward spiral (Iannaccone, 1992).

In contexts where social life is segregated by religion and prohibitions to interact with members of another congregation are in place, a religious minority position acts as a natural screening device because it imposes costs on members by inhibiting participation.
in dominant networks (Lijphart, 1968). Even if the prohibitions on interaction do not vary locally the costs that they impose do. If one is not allowed to interact with members of another group in a region where everyone belongs to your congregation membership costs are marginal. However, if on a local level your group decreases in size relative to another denomination prohibitions start to matter. When you belong to a religious minority the costs of limited interaction become enormous. In other words, costs of the same prohibitions limiting inter-religious interaction vary locally depending on how large your group is. Costs in turn act as barriers to entry that deter the undedicated but not the dedicated (Berman and Laitin, 2008).

Hence screening and selective identification turn minority groups into self-reinforcing hubs of commitment (Brewer and Silver, 2000). Local church leaders could potentially exploit these hubs to set up rescue operations for Jews in 2 ways. First commitment to group leaders could increase willingness to make sacrifices among members, making it easier to recruit individuals willing to engage in high-risk activities. Second, commitment to fellow group members could lower overall risks as they make denunciation of networks less likely (Berman and Laitin, 2008). This would lead us to expect that religious minorities where better able to provide assistance to persecuted Jews.

Hypothesis 1 Local minority churches were more likely to rescue Jews.

The Netherlands provides a unique laboratory to assess whether a relationship between religious minority groups and collective rescue exists as it was at the frontline of the reformation, counter-reformation and Protestant secessionism, which resulted in a mix of religious congregations at a local level.

2 Here my argument differs from classical accounts in the economics of religion. Where existing explanations stress that the severity of prohibitions increases costs, I am arguing that in segmented societies the same prohibition imposes different costs depending on local conditions.
3.2 Fault line between Rome and Reformation

The Netherlands has always been a breeding ground for new religious movements. In the early sixteenth century different streams of Lutheranism, Anabaptism and Calvinism developed in Dutch cities with the latter congregation becoming the most dominant during the reformation. Together with urban patricians and local nobility who were attracted to more fiscal autonomy these Calvinists organized an insurgency against their Catholic King Phillip who pursued anti-Protestant policies. After the uprising, the country was cut in half in 1579. Whereas large parts of the South-East were reattached to Phillip’s territory, the northern parts broke away from the Spanish crown, forming the Republic of the United provinces. William of Orange, a key leader of the revolt, was a strong advocate of religious tolerance. This was reflected in the founding document of the Dutch Republic, with Article XIII stating explicitly that no one should be persecuted for religious reasons (Israel 1995).

These political processes had an enormous impact on the effectiveness of the counterreformation. While the Catholic church could uproot newly founded Protestant communities in the South-East under the reign of the Spanish king, the re-establishment of Catholicism in the North was largely impaired and depended heavily on the passion of individual missionaries (Rogier 1964). The constitutional protection of religious pluralism, however, also prevented the complete conversion to Calvinism. For the same reason, the Netherlands never became religiously homogenous after re-conquering the South-East in 1648, despite Calvinist privileges in education and politics.

Being literally at the fault line between Rome and Reformation (Kok 1964), the country now became a hotbed of missionary activity as both Protestants and Catholics started to make inroads into each others territories (Rogier 1964). These activities created religious enclaves on both sides of the religious boundary. While the Catholic mission in the North was more successful than its Protestant counterpart in the South, small pockets of Protestantism were able to grow over the years due to economic integration of industrialized regions near the Belgian border (Verwey-Jonker 1953).
Apart from conflict between Protestantism and Catholicism, conflicts within the Protestant church added to the emergence of minority enclaves throughout the country. In the nineteenth century, Orthodox Protestants broke away from the dominant Dutch Reformed church out of discontent with enlightened undertones of modern Protestantism. Although these communities were spread out all over the country, they were more concentrated in the North and Center (Knippenberg, 1992).

Figure 2 shows the relative strength of Catholicism versus Protestantism and the strength of Orthodox Protestant movements per county in 1930. Whereas completely red counties were dominated by Catholics, green counties were dominated by Protestants. The political geography of 3 centuries was still visible in the interwar period (CBS, 1931). Catholics were dominant in the South, while Protestants dominated the North. In addition to the Orthodox Protestant churches that were spread throughout the country, minority enclaves also emerged in areas without dominant church in the East and North-West as well as near the religious fault line (counties represented in yellow and orange in Figure 2).

Given this religious landscape, I divide hypothesis 1 into 3 sub-hypotheses:

Hypothesis 1.1 Catholics were more likely to rescue Jews in Protestant parts of the country.

Hypothesis 1.2 Protestants were more likely to rescue Jews in Catholic parts of the country.

Hypothesis 1.3 Protestants were more likely to rescue Jews in Catholic parts of the country.
Case studies

Local case studies lend some support to these hypotheses. Let us for a second return to the puzzle with which I started this paper. One of the main forces underlying the rescue activities in Catholic Heerlen was Protestant reverend Gerard Pontier. After encouraging Jews living in his neighborhood to go underground he organized his parish into a tightly knit community that insulated Jews from outside infiltration (Rens, 2013). This process is probably best symbolized by how Jewish children were transported from one safe house to the other within Heerlen. Because some of these children had "Semitic looks", they could not simply walk out in public. Instead, a group of Protestant children gathered, formed a hedge and played a game of leap-frog, limiting exposure of facial characteristics by forming a human caterpillar (Author, 2013). Quite literally, Protestants in Heerlen placed a protective shell around Jews.

Sittard also had a small group of Protestants who sheltered at least three Jews. However, their community was much smaller and too far removed from Jewish inhabitants to have a real impact (Author, 2013). In the whole province of Limburg, Protestants were strongly overrepresented among helpers. Moreover the Catholics that did provide shelter started doing so in the last year of the war when most of the damage was already done (Rens, 2013). In addition to Limburg, Protestants also dominated rescue networks in the predominantly Catholic region Twente (Hilbrink, 1989).

That a minority position bolstered Catholics in Protestant parts of the country as well is nicely illustrated by statements of a Protestant Vicar in predominantly Protestant Sneek which, with an evasion rate 55 percent, was the safest village in the province of Friesland. In her post-war testimony, the vicar could not hide how amazed she was that her Roman Catholic counterpart, church chaplain Janssen, was able to shelter significantly more Jews despite the fact that the Catholic community was so much smaller.

3 In line with these implications case studies and statistical analysis suggest that pre-war mobilization was much stronger in religious minority communities. Members of religious minority groups were more likely to be affiliated with religious labor unions, vote for religious parties, set up religious schools and establish churches (Author, 2013).
than hers (Flim 1997). Janssen’s network was in no sense unique. Similar Catholic rescue movements were also known to be active in Protestant Enschede, Bussum, Salland, Groningen, Tiel, Woerden, Heiloo, Zeist and Wassenaar (Author 2013).

In line with hypothesis 1.3, Orthodox Protestant churches were active throughout the whole country. Local historians have for instance identified rescue groups in Hardenberg, Zwartshuis, Badhoevedorp, Nieuw Vennep, the whole province of Friesland, Venlo, Enkhuizen and Zaandam (Author 2013). A telling story is that of Orthodox Protestants rescuers in Nieuw Vennep. A deputy minister of the Orthodox Protestant church in this region forged linkages between local traders and farmers which were crucial for setting up a sheltering infrastructure as the latter often had the space and resources to keep Jews underground for a prolonged period of time. In the village itself 2 pockets of protection emerged separated by a series of houses owned by members of the National Socialist Party who, at any cost, had to be prevented from finding out (Stam 1986).

A little bit outside the village lived Hannes Boomgaard also known as the ”the bush monkey because he always hanged in there”, who saved around a hundred Jews. The whole Orthodox Protestant community seemed to know what the bush monkey was up to. Among the Orthodox Protestants who harbored mixed feelings about his rescue activities his farm was known as ”the concentration camp” because it housed so many Jews. The church for him, however, always felt as a safe haven: ”I trust all Orthodox people”, he often said. Less romantic testimonies reveal that Orthodox Protestant believers in the village were uncomfortable with what he was doing but could not bring themselves to denounce someone they considered one of their own. While Hannes often turned to fellow church members to collect money or to place Jews when his residency became too crowded, the Orthodox Protestant grocery and bakery provided Boomgaard with food for ”his guests”. Equally important were the warnings he got from a local police officer when the Germans were actively looking for Jews. One time, he told members of the Dutch reformed (non-Orthodox) church, who he mistakenly took for co-religionists, about his activities. This resulted in his arrest by Nazis only a few days later (Ommeren and
Culling post war testimonies also seem to confirm that minority groups were more likely to rescue Jews. Of all the rescuers commemorated by Yad Vashem (Michman et al., 2004) for whom the religion is known (908 in total), 62 percent belonged to a minority church (Author, 2013). A similar picture emerges when one re-analyzes survey data collected among Jewish children who were sheltered during the war (Evers-Emden and Flim, 1996). Of all the 226 rescuers for whom the religion was known, 61 percent adhered to a minority religion (Author, 2013).

Postwar surveys, testimonies and local case studies all suffer from a certain bias as they mostly rely on information provided by survivors and successful helpers after the war. In the next sections, I will therefore complement these scattered and incomplete data sources with a statistical analysis of geocoded data on Jewish evasion to see whether proximity to minority churches actually increased the probability of evasion.

5 Data and Methods

5.1 Unit of analysis: Registered Jews

Numerous historians have described the fate of Dutch Jews during the war in extensive case studies of one or two cities (Michman, Beem and Michman, 1999). Often these studies contain estimates of local deportation rates. Although they provide fascinating accounts of how the Holocaust played out at the local level, they are not adequate for comparative research as they deploy different sources, procedures and criteria to derive at their estimates (Flap, Geurts and Ultee, 1997).

In order to systematically test the hypotheses outlined in the previous sections, I

\[I \text{ divided the Netherlands in counties where Protestantism was stronger and counties where Catholicism was stronger. Then I counted the number of Dutch reformed rescuers in the latter half as well as the number of Catholic rescuers in the former half and added the number of rescuers belonging to Orthodox Protestant denominations. This sum was then divided by the total number of rescuers for whom the religion was known. According to this coding scheme 32 percent of the population would be a member of a minority congregation. } \]
follow Croes and Tammes (Croes and Tammes, 2004) in constructing an individual level dataset of Jews based on German registration lists. At the end of 1941 the German authorities forced local governments to collect individual level data on all Jews living in their municipalities. On these lists religion, address, birth date and country of birth was recorded for all Jews. The Germans created 496 lists, 1 for each municipality, on which they listed information of 140,000 full Jews. In July 1942, shortly before the deportations started, the registration lists were updated. This was done to obtain information on 9,000 Jews living in coastal regions, Noord-Holland and Utrecht that were recently evacuated to Amsterdam as part of German residential concentration efforts (Presser, 1965). Copies of these lists are available at the Dutch Institute of War Documentation (NIOD), the Jewish History Museum, local archives, the Central Bureau for Genealogy and Yad Vashem. As less than a 100 Jews refused to register (Jong, 1969-1991), I can be confident that registration lists provided a complete picture of the Jewish population right before the deportations.

I have been able to digitalize the information of 129,821 Jews living in 464 municipalities. It is important to emphasize that in order to create this database, I have built on the efforts of other scholars. Croes, Tammes (Croes and Tammes, 2004; Tammes, 2012) and Van Rens (Rens, 2013) together already digitalized names and birth dates of 121,000 Jews living in 288 municipalities. Information of around 1,647 Jews from 32 communities is missing. Using logistic regression analysis I have tried to predict whether a community was missing or not. No major predictor could be identified suggesting that the sample is not systematically biased. Partly due to their long history in the Netherlands - the first established themselves around the turn of the 16th century - Dutch Jews lived throughout the country (see Figure 3) in regions of different religious composition, creating sufficient variation on the dependent variable.

[Figure 3 about here.]

5Citizens were considered full Jews if at least 3 grand parents were members of the Jewish church. Citizens with 2 Jewish grandparents were only considered Jewish if they themselves or their spouse were members of the Jewish church.
Since we are interested in how rescue organizations shaped survival chances, 3 groups of Jews are disregarded in the analysis because they were never at risk for deportation or evaded deportation through legal means. First, I took out 1,683 Jews that died a natural death or committed suicide before July 1942. Data on cause of death is obtained from the Dutch Digital Monument described below. Second, I disregarded 700 Jews that were given permission to emigrate legally [Jong 1969-1991]. Third, I identified Jews that were able to evade deportation legally by appealing their Jewish identity. This information was obtained from lists compiled by the Referat Innere Verwaltung that included all Jews that were exempted from deportation [Jong 1969-1991].

A 4th group was taken out mostly for pragmatic reasons. For most municipalities the most up-to-date 1942 lists were available. For Amsterdam however this was not the case and I had to rely on a 1941 list instead. By taking this list however I automatically excluded information on Jews who were evacuated to Amsterdam from other parts of the country. Disregarding this group however also makes sense substantively. Since this group was technically already inside the bureaucratic system of the Germans the chances that they would be able to make use of rescue networks in a region in which they had just arrived was pretty slim. In total 125,691 Jews were included in the analysis.

5.2 Dependent variable: Evasion

In order to determine which of the registered Jews were able to evade deportation, I match the digital registration lists against the Dutch Digital Monument (DDD) and lists of Jews returned from camps after the liberation. The DDD is an online portal maintained by the Jewish History Museum that commemorates all Jews that died during the war. It is constructed out of a wide array of sources: commemoration books, the Netherlands Red Cross, registers from transit Camps Vught, Westerbork and Amersfoort, obituaries from Jewish weeklies and honor rolls of resistance fighters. The DDD lists names, dates

7Additional analyses were done excluding Jews living in Amsterdam and 3 other major cities. Results were consistent with the ones presented below.
of birth and the places of death. Based on this information I selected all Jews that died inside camps and marked them as deported. In addition, I matched the 125,691 names against lists of 5,400 Jews that were found in camps alive after the liberation. These people survived the war so were not recorded in the DDD but did get deported so needed to be coded as such.

All the files were linked using the following matching procedure. For each case I created 3 identification strings that taken together uniquely identified all Jews on the lists. The first 2 strings contained the first and last name while the third string contained the date of birth. Simply matching all the files based on these strings would be a bad idea. Due to spelling errors, coding mistakes, formatting variation, and missing information this would result in an enormous amount of mismatches. Therefore I made use of a two-stage matching procedure that combined statistical and manual techniques. For the first part I used a statistical matching procedure developed by Blasnik (2010). When pairing cases this procedure calculates an overlap percentage for all pairs of observations. This percentage was used to identify potential matches that needed to be inspected manually. To do this, I first had to determine what overlap percentages indicate potential matches and which ones do not. I did this by coding 1500 matches manually regardless of their overlap score and compared the number of manual matches per overlap score.

This procedure suggests that cases with an overlap-score below sixty did not include any actual matches. Based on this I decided to manually inspect all pairs that had an overlap score above 60 percent. After matching all cases the overall evasion rate was 28 percent; this is close to the overall estimate of 26 percent for the Netherlands provided by Hirschfeld (Hirschfeld, 1991). To make sure our matching procedure did not introduce any regional bias, I compared it with completely manually matched data for the 407 Jews living in the province of Limburg provided by historian Van Rens (Rens, 2013). Overall, individual mistakes are rare. Of the 407 Jews, six were incorrectly identified as deported and for 2 cases the opposite mistake was made. Mismatches were due to incomplete information because civil servants forgot to provide information on dates of birth. The
correlation between municipality level evasion rates was high \((r = .95)\), indicating regional bias is limited.

5.3 Independent variable: minority churches

The addresses recorded in the registration lists are used to retrieve fine grained coordinates of residential location for all Jews in the dataset. I pair this data with a geo-referenced database of all Christian churches in 1942, the year the major deportations started. Address information for churches is retrieved from the Dutch inventory for Church buildings compiled by Sonneveld and maintained by the Free University in Amsterdam [IKGN 2011]. These 2 geo-referenced databases are exploited to assess whether Jews living close to minority churches were better able to evade deportation. The assumption underlying this operationalization is that the extent to which networks of religious groups intersect increases with geographic proximity. Research has pointed out that pre-war friendships, acquaintances and other face-to-face contacts were crucial to bring Jews in contact with rescue networks [Varese and Yaish 2000; Tammes and Ultee 2007]. In Heerlen, Reverend Pontier actually approached Jews in his neighborhood himself and encouraged them to go underground [Flim 1997]. Others suggest Jews often took the first step in contacting nearby rescuers [Varese and Yaish 2000]. Regardless of who took the initiative, the bridges between rescuers and rescued often clustered in space.

I assume Jews live close to a minority group when a church in their immediate environment belongs to a minority congregation. To capture the spatial clustering of religious groups, I draw a circular buffer area around each Jewish individual. In Figure 4 this is illustrated for Protestant county Vriezenveen and Catholic county Tubbergen. Within this buffer I count the number of churches for each denomination. Based on these counts I create 2 religious proximity measures: a) the proportion of Catholic (i.e. non-Protestant)

8A coding of 2807 postwar testimonies also suggested that 89 percent of all Jews that found shelter mentioned local social contacts. 63 percent of 11,421 Jews for which information of hiding is available found shelter in the region where they were living legally in the first year of the war. Needless to say a much larger percentage made use of local networks to illegally migrate within and between regions [Author 2013].
churches to tap the relative strength of Catholic versus Protestant groups in the immediate environment (Catholic Proximity) and the proportion of church buildings that belong to the Orthodox Protestant community to assess the strength of other minority groups (Orthodox Protestant proximity). The Catholic proximity measure is interacted with the overall proportion of all believers in the county that belong to the Roman Catholic church and not to any of the Protestant churches (Catholic strength). If the minority theory holds one would expect Catholic proximity (non-Protestant proximity) to have a positive effect on evasion in Protestant counties (such as Vriezenveen) and a negative effect in counties dominated by Catholics (such as Tubbergen). In addition, one would expect a direct and positive correlation between the presence of Orthodox Protestant churches and survival regardless of context since they form minorities everywhere. Data on religious membership is obtained from the 1930 census (CBS 1931).

Since the threshold for what constitutes proximity is not obvious I conduct different analysis in which I vary the radius of the buffer from 10 minutes (1 km) to 20 minutes (2 km) walking distance. This lower threshold is chosen because the number of Jews not living close to a single Christian church increases enormously when we use a 1 km kilometer radius (3,064 versus 877 for a 1.25 km threshold.).

Because of data availability I choose the county as the lowest level of aggregation. I have however also used different levels of aggregation to calculate the percentage of Catholics in the wider region. I also calculated percentages for the counties in which a Jew lived plus all other counties within a 5, 10, 15 and 20 km radius. Results with counties are presented below because they were the most conservative. In a supplemental analysis I also interacted the Catholic proximity measure with the percentage of the population that belongs to the Catholic church and the percent of the population that belongs to any of the Protestant churches. Results are very similar but asymmetric due to the presence of seculars and Jews. In addition, I also interacted the proximity measures with the percentage of votes for the Catholic party during the previous election and the percentage of the population that was a member of the Catholic labor union. Results were in line with the ones presented below.
5.4 Analysis: auto-logistic Regression

Conventional statistical methods assume the independence of observations. The data described above is likely to violate this assumption as Jews living in the same county, village, street or street corner are dependent on each other for 2 reasons. First of all, they share the same social and political context that might affect their evasion chances. Second, the deportation of one Jew is likely to affect the deportation of a Jew living nearby as Germans often extracted information from their prisoners to trace down families, friends and acquaintances. Both these forms of spatial dependence create autocorrelation and typically introduce bias in standard errors and coefficients (Gleditsch, 2007). Our observations are similar to point data analyzed in geo-statistics. It is common practice in this field to deploy variogram modeling to detect spatial auto-correlation of a variable \(Y\) at location \(x_i\) for all pairs of observations separated by distance \(h\). A sample variogram reflects the extent to which nearby observations have similar values (Cressie, 1993) and can be estimated by:

\[
\gamma(h) = \frac{1}{2N(h,d)} \left(\sum_i (Y(x_i + h, d) - Y(x_i, d))^2 \right)
\]

The intuition underlying this approach is that autocorrelation will result in lower variation \(\gamma(h)\) between nearby observations while no relationship between distance and variation exist between observation that are far removed. Typically, this will result in a sample variogram with a initial steep increase before plateauing. The distance at which the line flattens out is called "the range" and captures the point at which spatial autocorrelation is no longer present. Estimated variograms indicated that variance increases sharply until we reach the 5 km threshold. This suggests that autocorrelation is present between observations that are 5 km apart.\(^{10}\) Following ecologists, I model spatial autocorrelation by including an Autocovariate in the analysis tapping the average evasion

\(^{10}\)In an additional analysis I estimated separate variograms for the 4 major cities and the rest of the country. It is likely that spatial dynamics differ between densely and sparsely populated areas. However, for both big cities and other parts of the country the variance tapered off around 5 km.
rate of all other Jews living within a 5 km radius (Augustin, Mugglestone and Buckland, 1996). Since evasion is a binary outcome I estimate an auto-logistic regression with the following parameters:

\[
\Pr[y_i = 1|y_j] = \frac{e^{(\alpha + \gamma_i autocov + \beta_1 x_{rc} + \beta_2 x_{RC} + \beta_3 x_{rc}x_{RC} + \beta_4 x_{orth} + \beta_5 x_{church} + \beta_6 x_{jew})}}{1 + e^{(\alpha + \gamma_i autocov + \beta_1 x_{rc} + \beta_2 x_{RC} + \beta_3 x_{rc}x_{RC} + \beta_4 x_{orth} + \beta_5 x_{church} + \beta_6 x_{jew})}}
\]

(2)

where \(autocov = \sum_{j=1}^{n} w_{ij} y_j / \sum_{j=1}^{n} w_{ij} \), \(i \neq j \) and \(W_{ij} \) is a binary weight matrix that marks observations within 5 km distance of each other. In the absence of spatial autocorrelation \(\gamma_i = 0 \) and this model is identical to a standard logistic regression.[12]

This equation includes six variables in addition to the Autocovariate. Naturally the model contains the Catholic \((x_{rc}) \) and Orthodox Protestant proximity \((x_{orth}) \) measures described above. The Catholic proximity measure is interacted with the strength of Catholicism in a county \((x_{RC}) \) to test for heterogeneous effects. As said, we would expect Catholic (or non-Protestant) proximity to have a positive effect on evasion in Protestant regions and a negative effect in Catholic regions. To make sure we are not comparing regions that differ completely in terms of Jewish and gentile population size the model also includes a count of the Number of Jews within a 2 km radius \((x_{jew}) \) and the Number of churches in the direct environment \((x_{church}) \).[13] Descriptives are presented in Table 1.

Autocovariate models with binary dependent variables are difficult to estimate because

11Inspection of Robust Lagrange Multiplier Diagnostics for 100 random samples of the data (1000 observations) suggest that a spatial lag model is more appropriate than a spatial error specification (Anselin and Rey, 1991). I also estimated models with 3.5, 4, 4.5, 5.5, 6 km thresholds. Results were identical to the ones presented below.

12I also estimated models with a distance decay weight matrix. Results were consistent with the ones presented below.

13What constitutes the direct environment is again varied in different analyses. For the number of Jews I experimented with radiuses between 500 m and 5 km. All analysis were consistent with the ones presented below. The 2 km radius provided the best model fit.

they do not have closed solutions in MLE due to simultaneity bias. Therefore I rely on Maximum Penalized Likelihood (MPL) \cite{Besag1974, Gleditsch2007}.

5.5 Omitted variable bias

Investigating the effect of minority churches on evasion requires evaluation of a counterfactual claim: would the possibility to evade have been lower if no minority church was present? In observational settings these types of claims are hard to assess because regions are likely to vary along multiple other dimensions related to both evasion and the clustering of religious minorities. In the results section I will rely on a) county fixed effects, b) geocoded controls and c) an instrumental variable to assess the robustness of the overall results. Scholars have pointed out county characteristics resulted in the geographical clusters of evasion \cite{Croes2004, Croes2006, Croes1997}. To make sure that this is not driving our results fixed effects for counties are included in the analysis.

In addition, I include 2 sets of control variables. The first set deals with regional differences in repressive capacity. It is plausible that remote areas in which deviance flourished were harder to reach for the repressive apparatus of the Germans. I deal with this by controlling for the distance to the nearest SS-office and city center. The second set of controls tap social integration. Previous research suggests that social integration affected evasion both positively and negatively \cite{Moore2010, Tammes2007, Tammes2006, Tammes1997}. It is also likely that integration was impacted by the religious environment as you would expect deviant groups to be more inward looking and less interested in outsiders. Three measures of social integration are included in the analysis: whether a

\footnote{Although MPL provides consistent parameter values it tends to be inefficient. \cite{Ward2002} recently suggested a simulation approach that obtains approximations that are closer to the full likelihood function. However this approach is computationally not tractable with the present data because it requires one to work with extremely large (125,000 x 125,000) matrices. Other alternatives do not provide consistent improvements, while autologistic models systematically underestimate effects offering a conservative test \cite{Dormann2007}. I also drew 100 samples of 1000 Jews that were not within a 5 km radius of each other. For 81 draws the results were identical to the overall results. For the 19 other draws the results were in line, but the Catholic proximity measure was insignificant. Inspection of generalized Moran’s I indicated that autocorrelation disappeared after inclusion of the spatial lag for 100 random samples of the data (1000 observations) \cite{Kelejian2001}.}
Jew 1) was converted to Christianity, 2) had Dutch citizenship and 3) was married to a gentile. It is important to highlight that in addition to integration this last measure also captures exposure to persecution as recent research indicates that full Jews with a gentile partner were persecuted inconsistently (Stuhldreher 2007).

Another major methodological concern stems from migration patterns. As neither Jews nor deviant churches were randomly distributed over municipalities, it is possible that factors determining where they ended up also affected deportation. There may be reason to believe that this is indeed the case. Both Jews and other religious minorities might have decided to move to places that were more pluralistic or tolerant overall (Knippenberg 1992). This is a factor that is hard to capture empirically but does potentially influence the willingness of the local population to provide shelter. In order to solve this problem I employ a two-stage procedure using distance to missionary hotbed Delft as an instrument for Catholic church strength in the Protestant Northern Netherlands. The procedures will be described in more detail in section 6.2.

6 Results

6.1 Baseline models

Results of the statistical analysis are presented in models 1 to 6. Model 1 demonstrates that the percentage of Catholic churches in a 2 km radius improved evasion in regions dominated by Protestants. However, this effect becomes less strong once a region becomes more Catholic and turns negative once Catholics start dominating an area, suggesting that Protestant churches provided protection in Catholic parts of the country. Because it is somewhat difficult to interpret interaction effects in a logistic regression environment, I plotted the effect of moving the proportion of Catholic churches from 0 to 1 for varying levels of Roman Catholic strength in Figure 5.

[Table 2 about here.]
As we can see Catholic church proximity increases evasion with more than 20 percent in mostly Protestant counties, has no effect in mixed regions and reduces evasion with more than 20 percent in mostly Catholic regions. Hence, in line with hypothesis 1.1 and 1.2 Catholic networks formed shells of protection around Jews in Protestant parts of the country, while Protestant networks had the same effect in Catholic regions. An average Jew in a Protestant region had a 17 percent chance to evade deportation. Living close to Catholic churches increased this chance to 45 percent. Inversely, an average Jew living in a Catholic region had a 26 percent chance to find shelter. Living close to Protestant church would increase this chance to 48 percent.

Model 2 to 4 suggest that these interaction effects are not driven by the threshold of the radius used to calculate proportions. Regardless of whether we count churches within a 2, 1.75, 1.5 or 1.25 km radius, Catholic churches protect Jews in Protestant regions while Protestants did the same when they were a minority. Figure 6 shows the interaction plots. Although the shelter effect of Catholics in Protestant regions seems to be stronger than the reverse effect when we use a 1.75 or 1.5 km buffer, the results overall are the same.

Supporting hypothesis 1.3 Model 1 to 4 also suggest that the presence of Orthodox Protestant churches increased evasion rates. This suggests that proximity to Orthodox Protestant churches made it easier for Jews to find shelter. Changes in the predicted probabilities of evasion when moving the Orthodox church measure from its minimum to its maximum value are shown in the box plot above. When using a 2 km radius
to calculate proximity, the presence of Orthodox communities increases evasion with 20 percent. For the average Jew living in the Netherlands living close to Orthodox churches would increase the probability to find shelter from 29 to 49 percent. When lowering the radius the effect of Orthodox Protestantism becomes weaker but remains significant. The weakening of the effect is probably due to the fact that more cases score zero on all proximity measures since reducing the radius increases the chance a church falls outside the buffers’ catchment area.

[Table 3 about here.]

Models 5 and 6 show that our results are robust to controlling for measures of social integration and repressive reach. Including fixed effects for counties also does not alter the main results. This increases my confidence that the results are not driven by omitted variable bias. It also suggests that the theory explains both within and between county variation at a fine-grained level.

6.2 Instrumental Variable

To rule out worries about tolerance being a confounder, I use a particular aspect of the diffusion of Catholic minority enclaves that is unlikely to be correlated with local tolerance. As said above, some of the denominational variation in the Netherlands can be traced back to acts of individual missionaries. The existence of Catholic deviance in the Protestant Northern Netherlands is largely due to 1 man: Sasbout Vosmeer. In 1602 Vosmeer was appointed the first Vicar to the Catholic mission in Protestant Holland by Pope Clemens VIII. Right after his appointment, he had to move back in with his parents who lived in strictly Protestant Delft because the reformation had destroyed most Catholic resources in the North (Rogier, 1964).

15 The province of North-Holland however forms an exception. Because its bishop stayed in place during the religious wars of the sixteenth century the influence of missionary activities on local level Catholicism in this province was reduced. In the analysis I therefore exclude the province of North-Holland.
Historians of Catholicism refer to the counterreformation as a wildfire, spreading from Delft outwards to other parts the Northern Netherlands. Who was closest to Vosmeers’ fire was most likely to return to the Roman Catholic church. Rogier even goes as far as to say that the religious map of the Northern Netherlands would have looked fundamentally different if Vosmeers’ parents had decided to move back to Dordrecht or Utrecht (Rogier, 1964). Given the absence of strong Catholic networks in this region, Vosmeer had to travel by night dressed up as a land worker and relying on personal networks to win back the hearts and minds of the Hollanders. Vosmeer initially met with limited success, but over time his efforts began to pay off as he built enclaves of Catholics in the region (Rogier, 1964). Due to the arduous nature of 16th century travel his successes probably declined with distance.

I assume that the concentric spread of Catholicism around Delft has created a lasting imprint on religious deviance in the Northern Netherlands that is unrelated to latent tolerance towards minority groups. In the first stage regression, we deploy an OLS-model to predict a Jews proximity to Catholic churches in Northern Netherlands with a variable that measures the square root of Distance to Delft in kilometers. Standard errors are clustered on a county-level. As is evident from the large F-Statistics distance in Models 7 and 8, Distance to Delft is a strong instrument for the share of Catholic churches, regardless of whether we control for the number of churches, Jews and spatial autocorrelation or not. A 1 unit increase lowers Catholic church share with more than 1 percent. The reduced form analysis, presented in model 9, shows a strong negative relationship between evasion and Distance to Delft. Model 10 presents the second stage of a two-stage probit model. This second stage uses only the Catholic proximity that is due to Distance from Delft (Instrument) to predict individual level evasion. The effect of Catholicism on evasion in the Protestant Northern Netherlands is robust in the IV-specification. Increasing the instrument from its minimum to its maximum value increases evasion by 40 percent.

[Table 4 about here.]
I corroborated the assumption that Distance to Delft is unrelated to overall tolerance by regressing it against the presence of other religious minorities. As one can see in Models 11 and 12, the instrument is not significantly related to the presence of Orthodox Protestant churches or Jews in the region, suggesting Distance to Delft indeed affected the diffusion of Catholicism in ways unrelated to tolerance for minority groups. To assess whether Distance to Delft might affect other social economic characteristics of regions related to Catholicism, I regress the measure against unemployment levels, population and the percentage of people working in trade, industry, agriculture in the relevant counties. Data was obtained from the 1930 census (CBS, 1931). Table 5 shows no considerable relationships exist. Finally, I also conducted a placebo test, testing whether Distance to Delft affected the Catholic church share in the nearby south where missionary effects should not be visible given the overall dominance of the Roman church. As model 13 suggests, Distance to Delft did not influence the proximity to Catholic churches for Jews living in this predominantly Catholic region, providing further evidence for the notion that it captures the imprint of missionary activities unrelated to tolerance.

Table 5 shows no considerable relationships exist. Finally, I also conducted a placebo test, testing whether Distance to Delft affected the Catholic church share in the nearby south where missionary effects should not be visible given the overall dominance of the Roman church. As model 13 suggests, Distance to Delft did not influence the proximity to Catholic churches for Jews living in this predominantly Catholic region, providing further evidence for the notion that it captures the imprint of missionary activities unrelated to tolerance.

[Table 5 about here.]

[Table 6 about here.]

7 Conclusion

This paper takes a community perspective on genocide and suggests that religious minorities played an important role in explaining local variation in evasion. This suggestion has important implications for the literature on genocide studies, collective action and Dutch historiography.

Traditionally, arguments on religion and genocide have focused on inherent characteristics of different congregations. It has been argued that Catholicism reduced solidarity with Jews because of its reactionary tendencies and the traditional Jewish-Christian Schism. Others suggest that Orthodox Protestants, inspired by their attachment to the
Old Testament, were more likely to save Jews, while Protestants in general would have been better able to defy authorities because of their individualistic traditions (Moore, 2010). The central finding of this paper is that it is the structural position of Protestant or Catholic communities - and not something inherent to either religion - that produced collective networks of assistance to threatened Jewish neighbors (Longman, 2010).

The theory enables us to forge a link between the Dutch case and findings on religious rescue elsewhere. Research has shown the importance of religious minorities for the protection of Jews in areas as diverse as neighboring Belgium (Saerens, 2007) and Ukraine (Brandon and Lower, 2008) as well as in other genocides (Doughty and Ntambara, 2003).

The micro literature on rescue during genocide has helped us to better understand what motivates people to help (Monroe, 2001). The equally important capacity of individuals to actually rescue someone once they are willing to do so however has received less attention. This paper suggests that whether altruists can turn into heroes depends on the networks in which they are embedded, linking micro-motives to community outcomes. Even if individuals are willing to save Jews, their environment does not always provide them with the protective shell needed to reduce risk, impeding the (local) impact they would want to have on evasion.

Theories of collective action in general and religious collective action in particular have a much longer tradition in studying these types of interactions. Traditionally, European social theorists have portrayed religious institutions as agents of passivity that hampered mobilization, while scholars at the other side of the ocean depicted them as actors that inspired transformative waves of collective action (McAdam, Tarrow and Tilly, 2001). A recent wave of literature suggest that in order to understand whether churches spark mobilization or are the opium of the people, we need to look at religious leaders’ incentives. Leaders might be inspired to use their networks when they face external threats to their power by secular forces (Kalyvas, 1996) or religious competition (Trejo, 2009). This paper would add that even if leaders have the incentives to mobilize they do not always have full control over their networks. Commitment from their constituents is required to
obtain control and commitment as this paper has shown is in part a function of religious demography.

Finally, this paper also makes a contribution to the recently growing number of studies that deploy a community perspective on genocide. While most assume homogeneous community effects the current analysis suggests that the local level consists of multiple layers that interact with each other. Cleavages at the lowest level work out differently depending on the cleavages on a higher level. When local cleavages are in conflict with higher order cleavages collective action emerges (Tarrow 2007).

This has not been as much a story of hope as of tragedy. Our theory reveals how successful, rapid collective mobilization in high-risk contexts depends upon relatively strong social ties among well screened community members. But the necessity to restrict channels of recruitment to trusted ties however prohibited the expansion of collective rescue efforts beyond a narrow set of actors (McAdam 1986). In other words, being a religious minority does not only explain mobilization, but also its disjointed nature. Segregated networks only had limited carrying capacity to provide assistance (Staniland 2012). Despite inter-confessional collaboration at the top, it was not until relatively late-too late- that we saw the growth of a mass movement linking separate networks that cooperatively could have made a bigger impact early on.

References

Author. 2013. Church and Order: Christians and Jews during the Holocaust in the Low Countries. Book Manuscript.

Blasnik, Michael. 2010. “RECLINK: Stata module to probabilistically match records.” *Statistical Software Components*.

CBS. 1939. “Uitslagen provincial staten verkiezingen 1939.”

IKGN. 2011. *Inventaris Kerkgewouwen in Nederland.* Amsterdam: VU.

Figures

Figure 1: Evasion Jews in Heerlen, Sittard and the Netherlands (data described below).
Figure 2: Protestants, Catholics and Orthodox Protestants in the Netherlands, 1930 (CBS 1931).
Figure 3: Jews in the Netherlands, 1942.
Figure 4: Example Buffer Vriezenveen and Tubbergen.
Figure 5: The change in predicted probability of evasion with 95 percent confidence intervals as Catholic proximity moves from its minimum to its maximum value conditional on Catholic strength in region, using 2 km buffer.
Figure 6: The change in predicted probability of evasion with 95 percent confidence intervals as Catholic proximity moves from its minimum to its maximum value conditional Catholic strength in region: (a) 1.75 km buffer; (b) 1.5 km buffer; (c) 1.25 km buffer.
Figure 7: The change in predicted probability of evasion as Orthodox Protestant proximity moves from its minimum to its maximum value, using 4 different buffers. Point estimates are represented by points with 95 percent confidence intervals.
Tables

Table 1: Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evasion</td>
<td>125,691</td>
<td>0.286</td>
<td>0.452</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Catholic proximity (2 km)</td>
<td>125,691</td>
<td>0.397</td>
<td>0.137</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Catholic proximity (1.75 km)</td>
<td>125,691</td>
<td>0.360</td>
<td>0.140</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Catholic proximity (1.5 km)</td>
<td>125,691</td>
<td>0.358</td>
<td>0.146</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Catholic proximity (1.25 km)</td>
<td>125,691</td>
<td>0.354</td>
<td>0.156</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Catholic strength</td>
<td>125,691</td>
<td>0.376</td>
<td>0.134</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Orthodox Protestant proximity (2 km)</td>
<td>125,691</td>
<td>0.292</td>
<td>0.100</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Orthodox Protestant proximity (1.75 km)</td>
<td>125,691</td>
<td>0.279</td>
<td>0.103</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Orthodox Protestant proximity (1.5 km)</td>
<td>125,691</td>
<td>0.285</td>
<td>0.115</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Orthodox Protestant proximity (1.25 km)</td>
<td>125,691</td>
<td>0.285</td>
<td>0.130</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Number of Jews (2 km)</td>
<td>125,691</td>
<td>25.662</td>
<td>23.032</td>
<td>1</td>
<td>63,724</td>
</tr>
<tr>
<td>Number of churches (2 km)</td>
<td>125,691</td>
<td>32.658</td>
<td>16.674</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>Number of churches (1.75)</td>
<td>125,691</td>
<td>28.611</td>
<td>14.845</td>
<td>0</td>
<td>69</td>
</tr>
<tr>
<td>Number of churches (1.5)</td>
<td>125,691</td>
<td>22.113</td>
<td>11.820</td>
<td>0</td>
<td>62</td>
</tr>
<tr>
<td>Number of churches (1.25)</td>
<td>125,691</td>
<td>16.248</td>
<td>9.004</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Autocovariate</td>
<td>125,691</td>
<td>0.284</td>
<td>0.088</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 2: Auto-logistic regression of Jewish evasion (different buffers).

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 km</td>
<td>1.75 km</td>
<td>1.5 km</td>
<td>1.25 km</td>
</tr>
<tr>
<td>Catholic proximity</td>
<td>1.257***</td>
<td>1.331***</td>
<td>1.158***</td>
<td>0.870***</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
<td>(0.095)</td>
<td>(0.089)</td>
<td>(0.083)</td>
</tr>
<tr>
<td>Catholic strength</td>
<td>1.817***</td>
<td>1.300***</td>
<td>1.242***</td>
<td>1.228***</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.107)</td>
<td>(0.104)</td>
<td>(0.099)</td>
</tr>
<tr>
<td>Catholic proximity*Catholic strength</td>
<td>−2.351***</td>
<td>−2.057***</td>
<td>−1.866***</td>
<td>−1.679***</td>
</tr>
<tr>
<td></td>
<td>(0.163)</td>
<td>(0.161)</td>
<td>(0.157)</td>
<td>(0.152)</td>
</tr>
<tr>
<td>Orthodox Protestant proximity</td>
<td>0.920***</td>
<td>0.659***</td>
<td>0.592***</td>
<td>0.405***</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.073)</td>
<td>(0.065)</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Number of Jews (2 km)</td>
<td>−0.000***</td>
<td>−0.000***</td>
<td>−0.000***</td>
<td>−0.000***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Number of churches</td>
<td>−0.008***</td>
<td>−0.010***</td>
<td>−0.013***</td>
<td>−0.016***</td>
</tr>
<tr>
<td></td>
<td>(0.0005)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Autocovariate</td>
<td>3.222***</td>
<td>3.221***</td>
<td>3.244***</td>
<td>3.273***</td>
</tr>
<tr>
<td></td>
<td>(0.078)</td>
<td>(0.078)</td>
<td>(0.077)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.461***</td>
<td>−2.219***</td>
<td>−2.148***</td>
<td>−2.035***</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.049)</td>
<td>(0.047)</td>
<td>(0.045)</td>
</tr>
</tbody>
</table>

Observations: 125,691 125,691 125,691 125,691
Log likelihood: −72,584.310 −72,569.270 −72,557.500 −72,593.300

*p<0.05; **p<0.01; ***p<0.001.
Table 3: Auto-logistic regression (additional controls and fixed effects).

<table>
<thead>
<tr>
<th></th>
<th>Controls (5)</th>
<th>Fixed effects (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catholic proximity</td>
<td>1.093***</td>
<td>1.902***</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.278)</td>
</tr>
<tr>
<td>Catholic strength</td>
<td>1.466***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.127)</td>
<td></td>
</tr>
<tr>
<td>Catholic proximity*Catholic strength</td>
<td>−1.969***</td>
<td>−2.778***</td>
</tr>
<tr>
<td></td>
<td>(0.193)</td>
<td>(0.693)</td>
</tr>
<tr>
<td>Orthodox Protestant proximity</td>
<td>0.717***</td>
<td>1.257***</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.121)</td>
</tr>
<tr>
<td>Number of Jews (2 km)</td>
<td>−0.000***</td>
<td>−0.000***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Number of churches</td>
<td>−0.011***</td>
<td>−0.014***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Autocovariate</td>
<td>3.541***</td>
<td>0.337</td>
</tr>
<tr>
<td></td>
<td>(0.087)</td>
<td>(0.277)</td>
</tr>
<tr>
<td>Constant</td>
<td>−2.071***</td>
<td>−0.946</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(1.170)</td>
</tr>
</tbody>
</table>

Controls | Y | Y |
Fixed effects | N | Y |
Observations | 125,691 | 124,337 |
Log likelihood | −70,213.410 | −69,270.680 |
Akaike Inf. Crit. | 140,452.800 | 139,369.400 |

*p<0.05; **p<0.01; ***p<0.001.
Table 4: The effect of religious minorities on evasion: Results based on Distance to Delft.

<table>
<thead>
<tr>
<th></th>
<th>1st stage</th>
<th>2nd stage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Catholic proximity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance to Delft (sqrt km)</td>
<td>−0.014***</td>
<td>−0.012***</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Instrument</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Jews (2 km)</td>
<td>0.000</td>
<td>−0.000***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>Number of churches</td>
<td>0.000</td>
<td>−0.003***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>Autocovariate</td>
<td>.041</td>
<td>2.446***</td>
</tr>
<tr>
<td></td>
<td>(0.121)</td>
<td>(0.062)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.463***</td>
<td>0.414***</td>
</tr>
<tr>
<td></td>
<td>(.021)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Observations</td>
<td>38,854</td>
<td>38,854</td>
</tr>
<tr>
<td>F-Statistic first stage</td>
<td>16.970</td>
<td>9.760</td>
</tr>
</tbody>
</table>

*p<0.05; **p<0.01; ***p<0.001.
Table 5: Validity of Distance to Delft as an instrument.

<table>
<thead>
<tr>
<th></th>
<th>(11)</th>
<th>(12)</th>
<th>(13)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orthodox Protestant proximity</td>
<td>0.002 (0.002)</td>
<td>−0.000 (0.001)</td>
<td>−0.023 (0.028)</td>
</tr>
<tr>
<td>% Jews (2 km)</td>
<td>−0.000 (0.001)</td>
<td>0.023** (.009)</td>
<td>1.028*** (.230)</td>
</tr>
<tr>
<td>Catholic proximity in south</td>
<td>−0.023 (0.028)</td>
<td>1.028*** (.230)</td>
<td></td>
</tr>
<tr>
<td>Distance to Delft (sqrt km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.189*** (.008)</td>
<td>0.023** (.009)</td>
<td>1.028*** (.230)</td>
</tr>
</tbody>
</table>

Observations 38,854 38,854 2,044

R² 0.092 0.010 0.036

*p<0.05; **p<0.01; ***p<0.001.
Table 6: Valididy of Distance to Delft as an instrument 2.

<table>
<thead>
<tr>
<th>Distance to Delft (sqrt km)</th>
<th>% Trade</th>
<th>% Industry</th>
<th>% Unemploy</th>
<th>% Agriculture</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14)</td>
<td>0.034</td>
<td>−0.717</td>
<td>0.127</td>
<td>0.066</td>
<td>−604.098</td>
</tr>
<tr>
<td>(0.125)</td>
<td></td>
<td>(0.205)</td>
<td>(0.092)</td>
<td>(0.290)</td>
<td>(383.394)</td>
</tr>
<tr>
<td>(15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.125)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>18.566***</td>
<td>26.987***</td>
<td>9.082***</td>
<td>52.559***</td>
<td>12837.19***</td>
</tr>
<tr>
<td>(1.182)</td>
<td></td>
<td>(1.943)</td>
<td>(0.874)</td>
<td>(2.748)</td>
<td>(3633.791)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observations</th>
<th>624</th>
<th>624</th>
<th>624</th>
<th>624</th>
<th>624</th>
</tr>
</thead>
</table>

\(R^2 \)

| | 0.000 | 0.000 | 0.003 | 0.000 | 0.004 |

*p<0.05; **p<0.01; ***p<0.001.